Goal-Oriented Euclidean Heuristics with Manifold Learning

نویسندگان

  • Wenlin Chen
  • Yixin Chen
  • Kilian Q. Weinberger
  • Qiang Lu
  • Xiaoping Chen
چکیده

Recently, a Euclidean heuristic (EH) has been proposed for A* search. EH exploits manifold learning methods to construct an embedding of the state space graph, and derives an admissible heuristic distance between two states from the Euclidean distance between their respective embedded points. EH has shown good performance and memory efficiency in comparison to other existing heuristics such as differential heuristics. However, its potential has not been fully explored. In this paper, we propose a number of techniques that can significantly improve the quality of EH. We propose a goal-oriented manifold learning scheme that optimizes the Euclidean distance to goals in the embedding while maintaining admissibility and consistency. We also propose a state heuristic enhancement technique to reduce the gap between heuristic and true distances. The enhanced heuristic is admissible but no longer consistent. We then employ a modified search algorithm, known as B′ algorithm, that achieves optimality with inconsistent heuristics using consistency check and propagation. We demonstrate the effectiveness of the above techniques and report un-matched reduction in search costs across several non-trivial benchmark search problems.

منابع مشابه

Shamap: Shape-based Manifold Learning

For manifold learning, it is assumed that high-dimensional sample/data points are on an embedded low-dimensional manifold. Usually, distances among samples are computed to represent the underlying data structure, for a specified distance measure such as the Euclidean distance or geodesic distance. For manifold learning, here we propose a metric according to the angular change along a geodesic l...

متن کامل

Data-based Manifold Reconstruction via Tangent Bundle Manifold Learning

The goal of Manifold Learning (ML) is to find a description of low-dimensional structure of an unknown q-dimensional manifold embedded in high-dimensional ambient Euclidean space R p , q < p, from their finite samples. There are a variety of formulations of the problem. The methods of Manifold Approximation (MA) reconstruct (estimate) the manifold but don’t find a low-dimensional parameterizati...

متن کامل

Curvature-aware Manifold Learning

Traditional manifold learning algorithms assumed that the embedded manifold is globally or locally isometric to Euclidean space. Under this assumption, they divided manifold into a set of overlapping local patches which are locally isometric to linear subsets of Euclidean space. By analyzing the global or local isometry assumptions it can be shown that the learnt manifold is a flat manifold wit...

متن کامل

Tangent Bundle of the Hypersurfaces in a Euclidean Space

Let $M$ be an orientable hypersurface in the Euclidean space $R^{2n}$ with induced metric $g$ and $TM$ be its tangent bundle. It is known that the tangent bundle $TM$ has induced metric $overline{g}$ as submanifold of the Euclidean space $R^{4n}$ which is not a natural metric in the sense that the submersion $pi :(TM,overline{g})rightarrow (M,g)$ is not the Riemannian submersion. In this paper...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

متن کامل
عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013